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Abstract

A new second-order accurate implicit temporal numerical scheme for the direct numerical simulation of turbulent flows
is presented. The formulation of the implicit method and the corresponding tunable parameters are introduced. The
numerical simulation results are compared with the results given by explicit Runge–Kutta schemes, theoretical results,
and published experimental and numerical data. An assessment of the accuracy and performance of the method to simu-
late turbulent flows is made for temporally decaying isotropic turbulence and subsonic and supersonic turbulent boundary
layers. Whereas no significant advantage over typical explicit time integration methods are found for the incompressible
flows; it is shown that the implicit scheme yields significant reduction in computer cost while assuring time-accurate solu-
tions for compressible turbulence simulations.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The detailed simulation of compressible turbulence requires solving the conservation of mass, momentum
and energy equations. For direct numerical simulations (DNS), all possible length scales and time scales must
be resolved by the numerical method. Thus, DNS requires accurate representation of time-dependent wave
propagation with high wavenumber (or high frequency) and small amplitude waves. Thus, numerical methods
with minimal dissipation and dispersion properties are necessary to obtain accurate results.

In addition, gathering turbulence statistics requires large amounts of computing time because the
simulations must be run on very large grids for many thousands of time steps. Generally, explicit
Runge–Kutta (RK) methods are used to approximate the time derivative because they provide high-order
accuracy, they have large stability limits relative to those of other explicit time integration techniques, and
they are easy to program. In contrast, implicit methods permit much larger time steps with a loss in
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accuracy. The cost of a RK solution increases as the stable time step decreases, while the cost of implicit
methods depends on the allowable time step to obtain a given level of accuracy. Therefore, it is conceiv-
able that for flows with very strict RK stability limit, we can use an implicit method with sufficient accu-
racy at less cost.

True implicit methods require the inversion of a large sparse matrix, demanding a great deal of computa-
tion and interprocessor communication. The Lower–Upper Symmetric Gausss–Seidel (LU-SGS) method of
Yoon and Jameson [19] approximates the implicit problem, which eliminates the need for large block matrix
inversions. Candler et al. [1] modify the LU-SGS method to make it easily parallelizable for inviscid flows. In
the resulting Data-Parallel Lower–Upper Relaxation (DP-LUR) method, the Gauss–Seidel sweeps of the
LU-SGS method are replaced with a series of pointwise relaxation steps. The DP-LUR formulation removes
all data dependencies, making the relaxation steps perfectly parallel. Wright et al. [18] extend the DP-LUR
formulation to viscous flows.

In this paper, we assess and develop an implicit method for the DNS of wall-bounded compressible turbu-
lent flows. In these flows, the stable time step is determined by the wall-normal grid spacing and the speed of
sound near the wall. This results in an extremely small stable time step for RK methods, making simulations
very costly. On the other hand, the implicit method can take very large stable time steps, but with less accuracy
and potentially more cost per time step. Thus, the key question is whether sufficiently accurate simulations can
be performed with the implicit method at less cost than the Runge–Kutta method.

In the following sections, two formulations of the new implicit method are introduced, one form being
more suitable for DNS of supersonic wall-bounded flows. The corresponding tunable parameters are also
presented. The performance for both methods is assessed by comparing the results given by the implicit
methods and those given by the well-established Runge–Kutta method. The dispersion and dissipation
properties of the schemes, as well as the time accuracy of the solutions are monitored. In turn, the param-
eter space to achieve accurate solutions is determined. The time integration methods are described in Section
2 and their efficient implementation in parallel computers is addressed in Section 3. In Section 4, we intro-
duce the accuracy indices for comparing the explicit and implicit method results. In Sections 5–8, we study
the performance of the implicit methods on test problems. These include a one-dimensional unsteady test
problem, temporally decaying isotropic turbulence, and turbulent boundary layers. Conclusions are given
in Section 9.

2. Time integration

The equations governing compressible fluid motion can be written as
oV
ot
þ oF

ox
þ oG

oy
þ oH

oz
¼ 0; ð1Þ
where V is the vector of conserved quantities and F, G, and H are the flux vectors in the three spatial direc-
tions. With the spatial and temporal discretizations decoupled, Eq. (1) can be viewed as an ordinary differen-
tial equation in time:
dU
dt
¼ R½U �; ð2Þ
where U is the solution of Eq. (2) and
R½U � ¼ � oF

ox
þ oG

oy
þ oH

oz

� �
. ð3Þ
The numerical stability of a method imposes a maximum stable advancing time step. This time step is based
on the length of time that it takes for information to travel one grid spacing. Thus, the time step depends on
both the fluid dynamics and the grid spacing. For the one-dimensional inviscid equations, the maximum stable
time step is
Dtmax ¼
Dx
juj þ a

; ð4Þ
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where Dx is the grid spacing, u is the fluid velocity and a is the speed of sound. For viscous flows, the max-
imum stable time step is the minimum of the convective time step, Eq. (4), and the viscous time step, Dtv,
which is given by
Dtv ¼
q

lDx2
; ð5Þ
In practice, some fraction of Dtmax is used, and the actual time step is given by
Dt ¼ CFLDtmax; ð6Þ

where CFL is the Courant–Friedrichs–Lewy number.

The accurate computation of turbulent flows requires time advancement methods that resolve all relevant
time scales. Popular explicit time-stepping methods include the family of Runge–Kutta methods. These are
briefly summarized below for comparison against the implicit time integration schemes, which are also pre-
sented in this section.

2.1. Classical Runge–Kutta schemes

Runge–Kutta methods propagate the solution over a time interval by combining the information from sev-
eral pseudo time steps and then using the information to match a Taylor series expansion up to a given order
of accuracy. For example, given the solution at time n, the standard fourth-order accurate Runge–Kutta (RK4
hereafter) method is given by
U ð1Þ ¼ U n þ Dt
2
R½Un�;

U ð2Þ ¼ U n þ Dt
2
R½U ð1Þ�;

U ð3Þ ¼ U n þ DtR½U ð2Þ�;

U nþ1 ¼ U n þ Dt
6

R½U n� þ 2R½U ð1Þ� þ 2R½U ð2Þ� þR½U ð3Þ�
� �

.

ð7Þ
2.2. Second-order accurate DP-LUR (DP2) method

The DP-LUR method [1,18] is first-order accurate. Here, we extend it to second-order accuracy. The impli-
cit form of the equations, using a second-order accurate discretization of the temporal derivative, is
3Unþ1 � 4Un þ U n�1

2Dt
þ oFnþ1

ox
þ oGnþ1

oy
þ oHnþ1

oz
¼ 0. ð8Þ
The flux vectors can be written in terms of the convective and viscous parts
F ¼ F þ F v; G ¼ Gþ Gv; H ¼ H þ Hv. ð9Þ

Following the DP-LUR derivation, and focusing on the inviscid problem for now, we linearize the flux vector
using
F nþ1 ’ F n þ oF
oU

� �n

ðU nþ1 � U nÞ ¼ F n þ AndU n; ð10Þ

Gnþ1 ’ Gn þ BndUn; ð11Þ
Hnþ1 ’ H n þ CndU n. ð12Þ
We then split the Jacobian matrices using the diagonal matrix. For example,
A ¼ SKS�1 ¼ Aþ þ A�; ð13Þ
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where
Aþ ¼ SKþS�1; A� ¼ SK�S�1; ð14Þ
and the diagonal matrix K contains the positive (K+) and negative (K�) traveling characteristic waves of the
flow. Thus, the spatial derivatives can be written as
oF nþ1

ox
’ oF n

ox
þ An oðdU nÞ

ox
¼ oF n

ox
þ 1

Dx
ðAþrxþ A�DxÞndU n; ð15Þ
where $ and D are spatial difference operators chosen to correctly represent the direction of information prop-
agation determined by the sign of the split Jacobians. Namely,
rxdU ¼ dU i;j;k � dU i�1;j;k; DxdU ¼ dU iþ1;j;k � dUi;j;k. ð16Þ
We estimate the future vector U iteratively such that
U nþ1 ¼ Up þ Upþ1 � Up ¼ U p þ dUp. ð17Þ
In Eq. (17), we identify inner and outer iteration processes. The n superscript represents the temporal discret-
ization, in which we solve for Un+1 with an ‘‘outer iteration’’ process. The p superscript represents the implicit
iteration index or ‘‘inner iteration’’ process, in which dUp! 0 so that Up! Un+1. The implicit iteration loop is
initiated at p = 0 with Up = Un. The iteration process to converge dUp to zero is described as follows. Eq. (8) is
approximated as
3

2
ðU p þ dU pÞ� 2U nþ 1

2
U n�1 ¼�Dt

oF
ox
þ oG

oy
þ oH

oz

� �p

�Dt
1

Dx
ðAþrxþA�DxÞ þ 1

Dy
ðBþryþB�DyÞ þ 1

Dz
ðCþrzþC�DzÞ

� �p

dUp

ð18Þ
Additionally, the Jacobians can be approximated as [19]
Aþ ¼
1

2
ðAþ CAIÞ; A� ¼

1

2
ðA� CAIÞ; ð19Þ
where CA is the spectral radius of the Jacobian A, given by the magnitude of the largest eigenvalue juj + a.
Collecting the diagonal terms on the left-hand side, we find
3

2
I þ Dt

CA

Dx
þ CB

Dy
þ CC

Dz

� �p

I
� �

dU p ¼ � 3

2
U p � 2Un þ 1

2
U n�1

� �
� Dt

oF
ox
þ oG

oy
þ oH

oz

� �p

� Dt
Dx

A�dU iþ1;j;k � AþdU i�1;j;k

� �p

� Dt
Dy

B�dUi;jþ1;k � BþdUi;j�1;k

� �p

� Dt
Dz

C�dUi;j;kþ1 � CþdUi;j;k�1

� �p
. ð20Þ
The expression for dUp in Eq. (20) is solved in two steps. First, the off-diagonal terms are neglected and the
right-hand side is divided by the diagonal operator to obtain
dU ð0Þ ¼ � 3

2
I þ Dt

CA

Dx
þ CB

Dy
þ CC

Dz

� �p

I
� ��1

� 3

2
Up � 2Un þ 1

2
Un�1

� �
þ Dt

oF
ox
þ oG

oy
þ oH

oz

� �p� �
. ð21Þ
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The second step consists of a series of mmax relaxation steps for m = 1, mmax,
3

2
I þ Dt

CA

Dx
þ CB

Dy
þ CC

Dz

� �p

I
� �

dUm ¼ � 3

2
U p � 2U n þ 1

2
U n�1

� �
� Dt

oF
ox
þ oG

oy
þ oH

oz

� �p

� Dt
Dx

A�dU iþ1;j;k � AþdU i�1;j;k

� �m�1

� Dt
Dy

B�dUi;jþ1;k � BþdU i;j�1;k

� �m�1

� Dt
Dz

C�dU i;j;kþ1 � CþdU i;j;k�1

� �m�1
. ð22Þ
Then, dUp ¼ dUmmax . In practice, dUp is converged to zero within a small error tolerance, �. During each p iter-
ation step, the condition dUp

6 � is checked for convergence. If convergence is not achieved, Up+1 = Up + dUp

and we advance the implicit loop. When convergence is achieved, we exit the implicit iteration loop, we let
Un+1 = Up, and we advance the outer loop.

The generalization of Eq. (22) to viscous flows involves replacing the inviscid fluxes by the full fluxes, Eq.
(9), as well as modifying the spectral radii to include the maximum eigenvalue of the flux vector Jacobians [16]
such that
CAv ¼ CA þ 2
cl

PrqDx
; CBv ¼ CB þ 2

cl
PrqDy

; CCv ¼ CC þ 2
cl

PrqDz
; ð23Þ
where c is the ratio of specific heats, l is the viscosity, and Pr is the Prandtl number.

2.3. Modified DP2 (DP2M) scheme

As it is demonstrated in the later sections of the paper, the original DP2 method leads to dispersive errors
under certain conditions when applied to problems including time dependent wave propagation phenomena.
To minimize dispersive errors, we consider a modified version of the implicit time integration given in Eq. (8).
Namely,
3Unþ1 � 4Un þ U n�1

2Dt
þ 1

2

oFn

ox
þ oGn

oy
þ oHn

oz

� �
þ 1

2

oFnþ1

ox
þ oGnþ1

oy
þ oHnþ1

oz

� �
¼ 0. ð24Þ
As it is shown below, the more diffusive character of the formulation in Eq. (24) relative to that of Eq. (8)
results in reduced dispersive errors. Thus, the modified version of Eq. (22) is given by
3

2
I þ Dt

2

qA

Dx
þ qB

Dy
þ qC

Dz

� �p

I
� �

dUm ¼ � 3

2
U p � 2U n þ 1

2
U n�1

� �
� Dt

oF
ox
þ oG

oy
þ oH

oz

� �p

� Dt
2Dx

�ðA�dUiþ1;j;k � AþdUi�1;j;kÞm�1 � Dt
2Dy
ðB�dUi;jþ1;k

� BþdUi;j�1;kÞm�1 � Dt
2Dz
ðC�dU i;j;kþ1 � CþdU i;j;k�1Þm�1. ð25Þ
2.4. Tunable parameters for DP2 and DP2M

There are four tunable parameters for the implicit methods: the maximum number of relaxation steps mmax,
the maximum number of implicit steps pmax, the error tolerance for the convergence of the implicit loop �, and
the CFL number, which is a tunable parameter for all time integration methods.

The relaxation loop arises from lagging the off-diagonal terms in the expression for dUp in Eq. (20).
Provided that the solution changes slowly, which must be true to achieve convergence and time accuracy, a
relatively small number of m steps are required. We chose mmax = 4. In turn, if this is a bad choice, it will
be difficult to achieve convergence and the implicit method will be costly.

The maximum number of implicit steps will be determined at convergence, we let pmax = 20 and expect that
convergence is achieved for p < pmax. If p = pmax, then either convergence is not achieved and the solution is
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inaccurate, or the method is costly. In the code implementation, we enforce that if p > pmax, an error message
is produced.

The error tolerance determines the accuracy of the solution and its value must be chosen separately from
one problem to another, in the same way as the CFL number is chosen for any explicit or implicit method. In
Sections 5–8, we determine the range of acceptable � and CFL values to achieve accurate solutions. In turn, we
determine the computational cost of the implicit method solutions relative to those given by explicit schemes.
A combination of these parameters that provides a sufficiently accurate solution with a reduced computational
cost per solution integration time (relative to explicit methods) is desirable.
3. Parallel performance of the implicit methods

Many aspects of the DP2 and DP2M formulations make the implementation efficient and inexpensive on
parallel distributed calculations. First, the calculation of dU(0) in Eq. (21) is trivial since the inversion of the
diagonal matrix
3

2
I þ Dt

qA

Dx
þ qB

Dy
þ qC

Dz

� �
I

� �
is a simple scalar inversion. Second, the evaluation of the spatial derivatives is the most costly part in Eq. (21).
This evaluation is also necessary for other methods such as an explicit Runge–Kutta scheme. Thus, Eq. (21)
requires very little additional computation compared to a one-stage Runge–Kutta method. Third, the spatial
derivatives in Eq. (22) do not need to be re-evaluated every m step, since they are calculated in Eq. (21).
Fourth, the addition of the off-diagonal implicit terms in Eq. (22) is relatively inexpensive because these quan-
tities are computed and used immediately, which eliminates the need to store them. Thus, for small values of
mmax, the cost (both in terms of computer time and memory) of evaluating the implicit method for one value
of p is similar to a single stage of a Runge–Kutta method.

We implement the method by partitioning the problem across the processors in two grid dimensions (usu-
ally the streamwise and spanwise directions). We communicate the necessary boundary data between proces-
sors with asynchronous MPI communication protocols, which allows the cost to be completely hidden for
typical problems. In practice, we achieve a factor of 96 speed-up on 128 processors of a cluster with
2.2 GHz Xeons connected with Myrinet.
4. Parameters for comparison

4.1. Convergence index

In Eq. (20), dUp is converged to zero within a small tolerance in order to minimize the global solution error.
To do so, we use the following convergence criterion:
1

N xNyN z

XNx

i¼1

XNy

j¼1

XNz

k¼1

dqp

q0

����
����
i;j;k

6 �; ð26Þ
where Ni is the total number of grid points in the ith direction, q is the density, q0 is a normalization factor
given by a reference value of q, and � is the user-specified convergence tolerance. Thus, Eq. (26) represents the
per-point average L1 norm of the density convergence error. When the absolute average change in the conti-
nuity equation is less than or equal to the prescribed tolerance, the current dUp is accepted as an update to the
solution and Eq. (20) holds. If we make the convergence tolerance more stringent, the solution requires a lar-
ger number of p iterations; if the tolerance is too large, the resulting solution may contain errors due to the
lack of convergence to Un+1. An assessment of the tolerance values and resulting accuracy is performed in Sec-
tions 5–8 for the different test problems.
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4.2. Computational-cost index

The number of evaluations of Eq. (3) can be used as an index of the computational cost for the different
methods. Note that the number of evaluations increases with (1) the number of time-steps to reach a given
physical time, (2) increasing number of Runge–Kutta stages per time step, and (3) increasing stringency of
the convergence criteria for the implicit method. An assessment of the cost index for the implicit method rel-
ative to that of the RK method, IC, is performed in Sections 5–8.

4.3. Accuracy index

The validation of accuracy for the simulation data can be done by direct comparison against the exact solu-
tion, well-established simulation or experimental data, and/or a theoretical solution (if available); or to grid
converged results (if computationally possible) using a well-established method. As an index of accuracy
we use
IE ¼
P
ðucal � u0Þ2P

u2
0

" #1=2

� 100; ð27Þ
where ucal is the value of the solution that we want to assess, and u0 is the reference data available for
comparison.
5. Propagation of a one-dimensional disturbance

To test the accuracy of the implicit methods, we assess the dispersion and dissipation errors of the scheme
when they are applied to the time-dependent long-range propagation of a linear one-dimensional disturbance.
We compare the results given by the DP2 and RK4 schemes. For this problem, the explicit solutions do not
have a strict stability limit. Therefore, computational savings using the implicit methods are not expected.

The governing equation is the linear wave equation
ou
ot
þ ou

ox
¼ 0. ð28Þ
The spatial derivatives are approximated using a sixth-order accurate Padé scheme [10] with a time step
Dt = aCFL, where a is the convective velocity of the wave and is unity according to Eq. (28). We initialize
the disturbance at t = 0 with a sine wave
uðxÞ ¼ sin
2px
aDx

� �
; ð29Þ
where aDx is the wavelength of the disturbance and a represents the number of grid points per wavelength
(PPW). We use two tests with 16 and 8 PPW. To emphasize numerical errors, we propagate the disturbance
over 100 and 50 times for a = 16 and 8, respectively.

Fig. 1 shows the convergence of the DP2 solution with varying CFL number. For both test cases with
CFL = 0.05, the error relative to the exact solution is about 8%. The effect of the error tolerance for DP2
is shown in Fig. 2. The solution converges with � = 10�6 for CFL = 0.25 and with � = 10�4 for CFL = 0.01
and 0.05. However, the solution is accurate only for CFL = 0.05 where the error is within 9%. For non-con-
verged solutions, dispersive errors increase with increasing CFL number. Fig. 3 shows the comparison of the
converged solutions with RK4 and DP2. The RK4 simulation converges with CFL = 0.25, where the error is
less than 1%.

For DP2M, Fig. 4 shows the effect of � at various CFL numbers. The results are similar to those shown in
Fig. 2. However, the dispersive errors are significantly reduced. Table 1 lists the error and the cost of the
DP2M simulations relative to that of the converged RK4 solution for PPW = 16. The accurate DP2M solu-
tion with CFL = 0.05 and � = 10�6 is two and a half times more costly than obtaining the converged RK4
solution. For this problem, the relative cost of DP2 and DP2M is similar.



x /a bΔ x
-1 6 -8 0 8 16

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
exact
0.25
0.10
0.05

x / Δ x
-16 -8 0 8 16

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
exact
0.25
0.10
0.05
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Fig. 2. Effect of error tolerance on DP2. One-dimensional propagating sine wave with 16 grid points per wavelength at CFL (a) 0.25, (b)
0.1, and (c) 0.05.
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6. Isotropic turbulence

In this section, we consider decaying isotropic turbulence to test the implicit methods. The governing equa-
tions are the compressible Navier–Stokes equations. The spatial derivatives are approximated using a sixth-
order accurate Padé scheme. The time step is given by
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Dt ¼ CFL min
Dx
juj þ a

þ Dy
jvj þ a

þ Dz
jwj þ a

þ q
l

1

Dx2
þ 1

Dy2
þ 1

Dz2

� �� �
; ð30Þ
where Dx, Dy and Dz are the local grid spacings in each coordinate direction, q is the density, and l is the
viscosity. The initial flow conditions are Mt = q/a = 0.3 and Rek = quRMSk/l = 35 with 643 grid points, where
q ¼ hu0iu0ii and k is the Taylor microscale. We simulate the decay of isotropic turbulence for six



Table 1
Relative accuracy and cost index variation for DP2M depending on CFL number and error tolerance for the one-dimensional test problem
with 16 PPW

CFL � IEDP2M (%) ICDP2M

0.25 10�3 P100 0.75
0.25 10�4 P100 0.75
0.25 10�6 P100 1.25
0.25 10�8 P100 1.50

0.10 10�3 23 1.88
0.10 10�4 32 1.88
0.10 10�6 32 2.50

0.05 10�3 4 3.75
0.05 10�4 4 2.50
0.05 10�6 8 2.50

CFL = 0.25 for the RK4 reference with IERK4 = 0.16%.
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non-dimensional time periods based on the initial large-eddy turn over time, st = k/uRMS. The length of the
simulation and the simulation parameters are representative of those used to study fundamental physical phe-
nomena or developing turbulence modes in isotropic turbulence [9,11,12]. The numerical simulation code is
the same as that used in the isotropic turbulence studies of Martı́n and Candler [11].

We compare the results given by the implicit and RK4 schemes, monitoring the temporal evolution of the
turbulent kinetic energy. The global error in the solution is computed with
Fig. 5.
energy
IE ¼ 1

N
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where the sum over n represents the cumulative sum in time from t = 0 to t = tN in equally spaced time inter-
vals. To further assess the dissipation, we consider the frequency distribution of the error, which is given by
IEðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where E(k) is the turbulent kinetic energy at wavenumber k.
Fig. 5 shows the effect of CFL on the stability of the RK4 method. We observe that the simulation is not

stable (numerical instabilities give physically non-meaningful results and crash the simulation) for CFL = 1.4,
while the solution is stable and converges for CFL = 0.7. For this flow and conditions, the stability limit for
the RK4 scheme is reached with CFL = 0.7.

Exploring how varying the CFL number affects the DP2 and DP2M solutions, we found that CFL > 2.8
gives unstable results for this problem. Fig. 6 shows the effect of error tolerance on the implicit scheme solu-
tions with CFL = 2.8 in comparison to the RK4 solution with CFL = 0.7. For the DP2 and DP2M, Fig. 6a
and b show that the implicit methods reproduce the RK4 solution with � up to 10�4. The global error, IE, is
roughly 2% and 1% for the DP2 and DP2M solutions, respectively. Fig. 6c and d show the frequency distri-
bution of the error for the implicit schemes. Comparing these figures, we observe that for � 6 10�4, DP2M
results in reduced error at all frequencies. For more stringent values of �, both schemes are accurate, in that
the error in is no greater than 2%. It should be noted that the purely dissipative region of the turbulent kinetic
energy spectra is near wavenumber k = 50. Thus in this wavenumber range, the amount of turbulent kinetic
energy is very small (six orders of magnitude below the energetic content in the large-scale/low-frequency
range) and IE(k) is not meaningful.

Table 2 lists the error and cost of the implicit simulations relative to that of the RK4 solution with
CFL = 0.7. The implicit time-accurate solutions are two to three times faster than those with RK4.
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Table 2
Relative accuracy and cost index variation for implicit simulations depending on CFL number and error tolerance for decaying isotropic
turbulence at Rek = 35 and Mt = 0.3

CFL � IEDP2 (%) ICDP2 IEDP2M (%) ICDP2M

0.7 10�3 6.32 0.42 0.84 0.64
0.7 10�4 0.97 0.59 0.43 0.68
0.7 10�5 0.29 1.05 0.23 0.93
0.7 10�6 0.23 1.78 0.25 1.46

1.4 10�3 6.51 0.25 1.55 0.27
1.4 10�4 1.60 0.39 0.74 0.48
1.4 10�5 0.49 0.78 0.41 0.85
1.4 10�6 0.40 1.43 0.44 1.44

2.8 10�3 16.72 0.16 5.00 0.21
2.8 10�4 2.06 0.37 1.00 0.37
2.8 10�5 0.96 0.62 0.87 2.20
2.8 10�6 0.89 1.19 0.87 2.55

CFL = 0.7 for the RK4 reference solution.
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7. Compressible turbulent boundary layer

In this section, we address the questions of (1) whether the implicit methods give accurate solutions for tur-
bulent boundary layers with increased values of CFL, relative to a RK3 method, which is sufficiently accurate
for these simulations, and (2) whether the implicit methods are cost effective. The simulations of turbulent
boundary layers are computationally intensive. Thus, performing parametric studies is very costly. Because
of this, we cannot perform simulations for the entire range of tunable parameters, and we are guided by
the isotropic simulation results.

The time step for this problem is given by Eq. (30). We consider the experimental conditions of Debiéve
[2,3,7] with M = 2.32 and Reh = 4000 and Eléna [4,5] with M = 2.32 and Reh = 4700. The spatial derivatives
are approximated using a third-order accurate, bandwidth optimized WENO scheme [17,14]. The time step is
defined as in Eq. (30). The number of grid points and domain size are 328 · 256 · 120 and 7.1d · 2.1d · 16.6d
in the streamwise, spanwise, and wall-normal directions, respectively. The initial conditions are those of Mar-
tı́n [13] and we use rescaling boundary conditions [20] to provide the inflow. Thus, we simulate a fixed spatial
location of a spatially developing boundary layer. After the initial transient, Reh is about 4600. We gather sta-
tistics for 70 non-dimensional time periods st = d*/Ue, where d* is the displacement thickness and Ue is the
velocity at the boundary layer edge. The spacing between fields is about 1.5st. The results are validated against
the experimental data and then used to assess the CPU time savings when using the implicit methods.

From the isotropic turbulence studies in the previous section, we find that � = 10�6 is a conservative value
for the error tolerance. Thus, we first consider the results using this value. Fig. 7 plots the mean flow profiles
for the DNS and experimental data. Fig. 8a and b plot the normalized magnitude of velocity and temperature
fluctuations, respectively, in comparison with the experiments of Debiéve. Fig. 9a and b show the magnitude
of the streamwise and wall-normal velocity fluctuations in comparison to the experiments of Eléna, where the
data are normalized using the edge and friction velocities respectively. The criteria for good accuracy is that
the simulation data agree with the experimental data to within the scatter of the experimental data. Also
accounting for the differences that are observed very closed to the wall in Fig. 9b, it should be noted that
accessing the near-wall region (z/d 6 0.2) is not possible experimentally. Thus, the experimental data are
not accurate very close to the wall. The DNS data are within the scatter of the experimental data. Figs. 7–
9 illustrate the overall good agreement among the experimental and DNS data with RK3 and DP2 at
CFL = 1. For these simulations, the cost of DP2 relative to that of RK3 is ICDP2/ICRK3 = 1.15.

For this problem, we find that the stability limit of the RK3 scheme is CFL = 1. Fig. 10 illustrates the effect
of CFL for the simulations with the DP2 scheme. We find stable solutions up to CFL = 40. We have not per-
formed simulations at higher CFL numbers. The accuracy of the simulations is good for CFL = 20. For
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CFL = 40 the solution departs slightly from the rest of the DNS and experimental data. The solution with
DP2M at CFL = 20 is also shown. The statistics are similar for both DP2 and DP2M methods.

Fig. 11 plots the one-dimensional energy spectra near the wall (z+ = qwusz/lw = 8, where us is the friction
velocity and subscript w indicates wall values) for the DP2 and DP2M solutions with CFL = 20 and for the
RK3 simulation with CFL = 1. We observe no significant difference between the numerical results and no dis-
persive errors.

Next, we consider the effect of varying the error tolerance for the implicit methods with CFL = 5. Fig. 12a
and b show the magnitude of streamwise turbulent intensity given by the DP2 and DP2M methods, respec-
tively. We observe differences in the data for the DP2 method. In particular the peak magnitude for the fluc-
tuations is inaccurate for � = 10�4. We observe no significant difference in the DP2M simulation data. Fig. 12b
and c show the near-wall energy spectra. Consistent with the previous result, we observe a departure from the
rest of the data in the large-scale (low-frequency) range of the spectrum for the DP2 method with � = 10�4. No
significant differences are observed for the DP2M method.
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We compare the results given by the implicit and RK3 schemes, monitoring the global error in the solution,
which is computed with
IE ¼ 1

kbl

Xkbl

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSimplicit �RMSRK3

� �2

RMS2
RK3

vuut � 100; ð33Þ
where the sum over k represents the summation of all data points within the boundary layer thickness, which is
given by kbl. Since the error is found to be larger in T 0RMS, it is taken as the RMS quantity to measure the
relative error. Fig. 13a and b plot IE for the DP2 and DP2M solutions varying CFL number and �, respec-
tively. The error increases with increasing both parameters, being roughly 4% for CFL = 40 and over 10%
for � > 10�5.

For � = 10�6, Table 3 lists the cost of the DP2 simulations relative to the RK3 solution with CFL = 1. For
accurate solutions, the DP2 and DP2M methods result in factors of about 17 and 6 reduction in computing
time, respectively. Table 4 lists the cost for the DP2 and DP2M simulations varying �. The cost of accurate
solutions is comparable for both implicit solutions. The accuracy and cost of the DP2M solutions does not
depend much on �, where ICDP2M is about 3.25 to 4 times less costly than the RK3 calculations.

8. Incompressible turbulent boundary layer

We consider the cost of the implicit and explicit methods for an incompressible turbulent boundary layer.
Because the simulations are computationally intensive, we only consider RK3 and DP2M results.
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Table 3
Relative cost index variation for the implicit methods depending on CFL number for the DNS of turbulent boundary layers using the
experimental conditions of Debiéve et al. with � = 10�6

CFL ICDP2 ICDP2M

1 1.15 *
5 0.23 0.25

10 0.10 *
20 0.06 0.16
40 0.03 *

The reference RK3 simulation is with CFL = 1. The �*� indicates that we have not performed the simulation.

Table 4
Relative cost index variation for the implicit methods depending on error tolerance for the DNS of turbulent boundary layers using the
experimental conditions of Debiéve et al. with CFL = 5

� ICDP2 ICDP2M

10�4 0.18 0.33
10�5 0.32 0.32
10�6 0.23 0.25

The reference RK3 simulation is with CFL = 1.
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The time step for this problem is given by Eq. (30). The simulation conditions are a M = 0.3 and
Reh = 1750, which are similar to those of Spalart [15]. The spatial derivatives are approximated using a
third-order accurate, bandwidth optimized WENO scheme [17,14] with the adaption (shock-capturing) mech-
anism turned off. The time step is defined as in Eq. (30). The number of grid points and domain size are
384 · 256 · 116 and 5.7d · 1.4d · 15d in the streamwise, spanwise, and wall-normal directions, respectively.
The initial conditions are computed using the procedure of Martı́n [13]. We gather statistics for 138 non-
dimensional time periods st = d*/Ue. The spacing between fields is about 4.0st. The results are validated
against empirical data and then used to assess the CPU time savings when using the implicit methods.

Fig. 14a and b plot the velocity profile and skin friction for the DNS with RK3 and CFL = 0.8 against the
theoretical predictions showing good agreement. For the same DNS simulation, Fig. 15a and b plot the tur-
bulent intensity profiles in comparison to the DNS data of Spalart [15] and the experiments of Klebanoff [8]
showing the good agreement. The DP2M simulations are unstable for CFL numbers greater than 2.5. Fig. 16
plots the turbulent intensities for the DP2M solutions with CFL = 2.5 and varying �. Simulations with
� = 10�4 are unstable; otherwise, we find accurate results with smaller values of �. The cost of the DP2M sim-
ulations relative to the RK3 solution is listed in Table 5. The DP2 simulations with CFL = 2.5 are roughly
25% more expensive than the RK3 solutions with CFL = 0.8.
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Table 5
Relative cost index variation for the DP2M method depending on error tolerance for the DNS of an incompressible turbulent boundary
layer at M = 0.3 and Reh = 1600 with CFL = 2.5

� ICDP2M

10�4 Unstable
10�5 1.22
10�6 1.29

The reference RK3 simulation is with CFL = 0.8.
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9. Conclusions

We present two formulations of a second-order accurate, implicit method for the simulation of turbulent
flows. The performance of the methods is assessed when applied to the long-range propagation of a linear one-
dimensional disturbance, temporally decaying isotropic turbulence, and turbulent boundary layers. The dis-
persion and dissipation errors, as well as the cost of the simulations are monitored and compared to the results
given by explicit Runge–Kutta schemes. The one-dimensional tests show that the original DP2 scheme leads to
dispersive errors. A modified scheme, DP2M, that reduces dispersive errors is also presented. We find that
both, the original and modified methods, give accurate results for the simulation of temporally decaying iso-
tropic turbulence and turbulent boundary layers. From the isotropic turbulence problem, we observe that the
dispersive behavior of the DP2 method decreases with decreasing �. For the boundary layer calculation, errors
are not found for �>10�5. This is consistent with the isotropic turbulence results. The DP2M method is more
stable than the DP2. The suggested value of � for DNS of compressible turbulence is 10�6. We also suggest
mmax = 4 and pmax = 20.

The stability criterion for compressible wall-bounded flows is very stringent due to the required small wall-
normal grid spacing and large speed of sound. Thus, very small time steps must be used with explicit methods,
resulting in very costly simulations. On the other hand, the maximum allowable time step for the implicit
methods is limited by the solution accuracy. We find that this limit is much less strict than the stability limit,
making the DP2M method approximately six times less costly than the RK3 method for the Mach 2.32 tur-
bulent boundary layer test problem. In contrast, no significant cost savings are found for the incompressible
boundary layer. Thus, the DP2M method is an attractive approach for the direct numerical simulation of com-
pressible wall-bounded turbulent flows. Time-accurate results are found for compressible decaying isotropic
turbulence as well, with computing saving factors of two and a half times over RK4 calculations.

The difference between the compressible and incompressible flow results is due to the extra constrain that is
imposed by the variation of temperature in a compressible flow. The non-uniform temperature distribution
results in sound speed and viscosity variations, which result in more stringent allowable stable time steps
Eqs. (4) and (5), relative to an incompressible flow. We find that for compressible flows this limit is much less
strict and the cost savings using a implicit scheme are more significant for compressible than for incompress-
ible flows, regardless of the flow being turbulent or laminar. The method works well for the DNS of wall-
bounded compressible turbulence.
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